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Synthesis

“Write programs that are correct by construction.”

Given a logical formula, does an equivalent transition system exist? If yes,
construct one.

Closed/open synthesis

Closed synthesis: no environment.

Open synthesis: the system is reactive, it evolves “against” the
environment.
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Synthesis

“Write programs that are correct by construction.”

Given a logical formula, does an equivalent transition system exist? If yes,
construct one.

Closed/open synthesis

Closed synthesis: no environment.

Open synthesis: the system is reactive, it evolves “against” the
environment.

Synthesis of reactive systems has wide applicability. Think about writing a
module that will be part of a larger system: the remaining system can be
abstracted as the “environment” that interacts with the module. The module
needs to be correct for all possible interactions.
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Some history

Synthesis of closed, centralized systems

Clarke/Emerson 1982, “Using branching time temporal logic to synthesize
synchronization skeletons”: We present a method of constructing
concurrent programs in which the synchronization skeleton of the program
is automatically synthesized from a (branching time) temporal logic
specification.

Manna/Wolper 1984, “Synthesis of communicating processes from
temporal logic”: In this paper, we apply Propositional Temporal Logic
(PTL) to the specification and synthesis of the synchronization part of
communicating processes. To specify a process, we give a PTL formula
that describes its sequence of communications.

In both settings the systems are closed (no environment). “Concurrent”
programs means here: product transition system. The synthesized programs are
not guaranteed to be implementable in a distributed model.
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Some history

Synthesis of open, sequential systems: games

Pnueli/Rosner 1989, “On the synthesis of a reactive module”: We
consider the synthesis of a reactive module with input x and output y,
which is specified by the linear temporal formula ϕ(x, y).

Kupferman/Vardi 1999, “Church’s problem revisited”: We consider linear
and branching settings with complete and incomplete information. [. . . ] In
particular, we prove that independently of the presence of incomplete
information, the synthesis problems for CTL and CTL∗ are complete for
EXPTIME and 2EXPTIME, respectively.

Synthesis of open, distributed systems?

Pnueli/Rosner 1990, “Distributed reactive systems are hard to synthesize”.
The limitation (of [CE82,MW84]) is that all the synthesis algorithms produce a
program for a single module [. . . ]. This is particularly embarrassing in cases
that the problem we set out to solve is meaningful only in a distributed
context, such as the mutual exclusion problem [. . . ]. The somewhat ad-hoc
solution [. . . ] is to use first the general algorithm to produce a single module
program, and then to decompose this program into a set of programs, one for
each distributed component of the system.
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I. Automata and logic: back to basics

7 / 104



Automata, logic and verification

Transition systems

S = 〈S,AP, S0,−→, λ〉

S is the set of states

AP is a (finite) set of atomic propositions

S0 ⊆ S is th set of initial states

−→ ⊆S × S is the transition relation

λ : S → 2AP labels states by sets of atomic propositions

Finite automata

A = 〈S,Σ, S0, (
a−→)a∈Σ,Acc〉

S is the finite set of states

Σ is a (finite) alphabet

S0 ⊆ S is th set of initial states

(
a−→)a∈Σ⊆S × S is the transition relation (function = deterministic)

Acc is the acceptance condition
8 / 104



Automata

Regular language

A = 〈S,Σ, S0, (
a−→)a∈Σ,Acc〉

Word w = a0a1 · · · : possibly infinite sequence of symbols from a finite
alphabet Σ. Set of finite words Σ∗, set of infinite words Σω.

Run ρ : s0
a0−→ s1

a1−→ · · · of A on w.

Successful run: s0 ∈ S0 and ρ satisfies Acc.

Accepted language L(A) = {w | ∃ some successful run of A on w}.

Example (automaton)

0 1 2

3

a, b

a a

a

a, b

S = {0, 1, 2, 3}
Σ = {a, b}
S0 = {0, 3}, F = {2, 3}
(Acc: end in F )

aaa ∈ L(A)
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Automata

Regular

A word language L ⊆ Σ∗ (resp. L ⊆ Σω) is regular (resp. ω-regular) if it is
accepted by some finite automaton.

Acceptance

Acc is a set of states F .

Finite words: a successful run must end in F .

Infinite words: a successful run must visit F infinitely often (Büchi
condition).

Determinism

Over finite words, deterministic and non-deterministic automata are
equi-expressive.

Over infinite words, deterministic Büchi automata are less expressive than
non-deterministic ones.

More powerful acceptance conditions are required for deterministic
automata over infinite words, e.g. the parity condition: states have
priorities and a run is successful if the highest priority visited infinitely
often is even.
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Automata, logic and verification

Logics

Temporal logics: Linear Temporal Logic (LTL), Computation Tree Logic
(CTL, CTL∗), µ-calculus

Monadic Second-Order Logic (MSO)

Model-checking

Roadmap to check whether a transition system S satisfies a formula ϕ:

Translate the formula ϕ (or its negation) into some (equivalent)
automaton Aϕ.

Build the product between S and Aϕ, and check for non-emptiness.
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Logic

Monadic second-order logic (MSO): syntax

First-order variables x, y, . . . and second-order variables X,Y, . . ..

Atomic propositions Pa(x)a∈Σ, S(x), x < y, x ∈ X.

Boolean connectors ¬,∧,∨, . . ., quantifiers ∃, ∀.

Semantics

Relational structure associated with a word w = a1a2 · · · over Σ, with
dom(w) = {1, 2, . . .}:

〈dom(w), succ, <, (Pa)a∈Σ〉

succ is successor relation on dom(w)

< is linear order on dom(w)

Pa = {k ∈ dom(w) | ak = a}
Second-order variables X,Y, . . . = sets of positions (subsets of dom(w))
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Language of ϕ

w � ϕ w models ϕ
L(ϕ) = {w ∈ Σ+ | w � ϕ} finitary language of ϕ
L(ϕ) = {w ∈ Σω | w � ϕ} infinitary language of ϕ

Examples

Every odd position carries an a.

∃X0∃X1

(
∀x
(
(x ∈ X0 ∨ x ∈ X1) ∧ (x ∈ X0 ⇔ x /∈ X1)

)
∧ 1 ∈ X1 ∧

∀x
(
(x ∈ X0 ⇔ succ(x) ∈ X1) ∧ (x ∈ X1 ⇔ succ(x) ∈ X0)

)
∀x (x ∈ X1 ⇒ Pa(x))

)
=: ODDa
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(
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)
∧ 1 ∈ X1 ∧

∀x
(
(x ∈ X0 ⇔ succ(x) ∈ X1) ∧ (x ∈ X1 ⇔ succ(x) ∈ X0)

)
∀x (x ∈ X1 ⇒ Pa(x))

)
=: ODDa

ϕ := ODDa ∧ EVENb L(ϕ) = (ab)+

(ab)+ is also definable in first-order logic (FO)

∀x
(
Pa(x)⇒ Pb(succ(x)) ∧ Pb(x)⇒ Pa(succ(x)) ∧ Pa(min) ∧ Pb(max)

)
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Büchi-Elgot-Trakhtenbrot theorem (∼ 1960)

A language of finite words is regular iff it is definable in monadic second-order
logic (MSO). Both conversions are effective.

Proof sketch.

1 direct implication: describe accepting runs in MSO
Partition dom(w) into sets Xs, one for each state s.
First position belongs to

⋃
s∈S0

Xs. Last one (resp. infinitely many

positions) belongs to
⋃

f∈F Xf .

Consistency of automaton transitions: for each k ∈ dom(w), s ∈ S, a ∈ Σ,

k ∈ Xs ∧ Pa(k) =⇒
⋃

s
a−→s′

(k + 1) ∈ Xs′

2 reverse implication: regular languages are closed under union (disjunction),
projection (existential quantification) and complement (negation). Closure
under complementation is easy, using determinization.
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Automata over infinite words

Recall: deterministic Büchi automata are less expressive than non-deterministic
ones.
More powerful acceptance conditions are required for deterministic automata,
e.g. the parity condition (“Rabin chain condition”, Mostowski 1985,
Emerson-Jutla 1991):

Parity automaton

A = 〈S,Σ, S0, (
a−→)a∈Σ, ` : S → {0, . . . , d}〉

where `(s) is called priority of state s. A run is accepting if the maximal
priority visited infinitely often is even.

Determinization

Classical determinization constructions, from Büchi to deterministic
Muller/Rabin acceptance: McNaughton (1966), Safra (1988),
Muller-Schupp (1995).

Piterman (2006), Kähler-Wilke (2008), Schewe (2009) and Liu-Wang
(2009) provide single exponential construction from non-deterministic
Büchi automata to deterministic parity automata.
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Summary

Model-checking linear-time properties (LTL, MSO) requires automata &
logic over infinite words.

Both model-checking branching-time properties (CTL∗, mu-calculus) and
synthesis require automata & logic over infinite trees.
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MSO over trees

Binary trees

Finite binary tree over alphabet Σ = partial mapping

t : {0, 1}∗ → Σ

such that dom(t) is finite, prefix-closed and x1 ∈ dom(t) iff x0 ∈ dom(t),
for all x.
ε: root, 0, 1: children of the root, etc.

Infinite binary tree over Σ = total mapping t : {0, 1}∗ → Σ.

MSO

Two successors left/right:

First-order variables x, y, . . . and second-order variables X,Y, . . ..

Atomic propositions Pa(x)a∈Σ, succ0(x), succ1(x), x < y, x ∈ X.

Boolean connectors ¬,∧,∨, . . ., quantifiers ∃, ∀.
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Tree automata

A = 〈S,Σ, S0, (
a−→)a∈Σ,Acc〉

a finite set of states S,

a finite alphabet Σ,

set of initial states S0 ⊆ S,

a transition relation (
a−→)a∈Σ ⊆ S × (S2 ∪ S),

an acceptance condition Acc.

Deterministic:
a−→ is function S → (S2 ∪ S)
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Automata over finite trees

Example

∨

∨

0 1

∧

1 1

Trees that evaluate to 1 at the root.

Acc is a set F ⊆ S of final states.
Run is successful if it ends on all
leaves in a final state.

S = {?,
√
}

S0 = {?}, F = {
√
}

∨−→
={(
√
, (
√
,
√

)), (?, (?, ∗)), (?, (∗, ?))}
∧−→ ={(

√
, (
√
,
√

)), (?, (?, ?))}
0−→= {(

√
,
√

)},
1−→= {(

√
,
√

), (?,
√

)}

Determinization

Deterministic bottom-up tree automata are an equivalent model.
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∨
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∧
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?
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?

? ?
√ √
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Automata over infinite trees

Büchi condition

Acc is a set of (final) states F ⊆ S. Run is successful if on every path, F is
visited infinitely often.

Parity condition

Acc is a labeling of states by priorities from {0, . . . , p}. Run is successful if on
every path, the highest priority seen infinitely often is even.

Determinism, complementation

Over infinite trees, deterministic automata are strictly weaker. So
complementation is a challenge.

Büchi tree automata are less expressive than parity tree automata.

Parity tree automata can be complemented (games!). This is the crucial
step in Rabin’s theorem, cf. next slide.
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Thatcher-Wright 1968, Doner 1970

A language of finite trees is accepted by some tree automaton iff it is definable
in MSO. Both conversions are effective.

The following result is deeply intertwined with the theory of infinite 2-player
games:

Rabin 1969

A language of infinite trees is accepted by some parity tree automaton iff it is
definable in MSO. Both conversions are effective.

Cor.

MSO over infinite, binary trees is decidable.
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II. Basics on games and controller synthesis
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Church’s problem (1963) “Logic, arithmetic and automata”

C

Input

Output

Problem

Given: specification R ⊆ ({0, 1} × {0, 1})ω
relating inputs/outputs.

Output: I/O device C : {0, 1}∗ → {0, 1}
s.t. (x,C(x)) ∈ R for all inputs x.

Controller C must react correctly on every input.

Remarks

The specification R is provided in an effective way, by an MSO formula or
a Büchi automaton.

The problem is more complicated than just requiring ∀x∃y .(x, y) ∈ R:
controller C must react continuously on inputs.
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Church’s problem (1963) “Logic, arithmetic and automata”

C

Input

Output

Problem

Given: specification R ⊆ ({0, 1} × {0, 1})ω
relating inputs/outputs.

Output: I/O device C : {0, 1}∗ → {0, 1}
s.t. (x,C(x)) ∈ R for all inputs x.

Controller C must react correctly on every input.

Remarks

The specification R is provided in an effective way, by an MSO formula or
a Büchi automaton.

The problem is more complicated than just requiring ∀x∃y .(x, y) ∈ R:
controller C must react continuously on inputs.

Church’s problem:
Synthesis of open systems: systems reacting on input from environment.
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Examples

Ex. 1

R: “the output is 1 iff the number of
previous inputs equal to 1, is even” s0 | 1 s1 | 0

0

1

1

0

Ex. 2

R: “the output is 1 iff some future input is 1”

Ex. 3

R: “The output has infinitely many 1’s if the input has infinitely many 1’s”.

24 / 104



Examples

Ex. 1

R: “the output is 1 iff the number of
previous inputs equal to 1, is even” s0 | 1 s1 | 0

0

1

1

0

Ex. 2

R: “the output is 1 iff some future input is 1”

Ex. 3

R: “The output has infinitely many 1’s if the input has infinitely many 1’s”.

24 / 104



Examples

Ex. 1

R: “the output is 1 iff the number of
previous inputs equal to 1, is even” s0 | 1 s1 | 0

0

1

1

0

Ex. 2

R: “the output is 1 iff some future input is 1”

No solution.

Ex. 3

R: “The output has infinitely many 1’s if the input has infinitely many 1’s”.

24 / 104



Examples

Ex. 1

R: “the output is 1 iff the number of
previous inputs equal to 1, is even” s0 | 1 s1 | 0

0

1

1

0

Ex. 2

R: “the output is 1 iff some future input is 1”

No solution.

Ex. 3

R: “The output has infinitely many 1’s if the input has infinitely many 1’s”.

24 / 104



Examples

Ex. 1

R: “the output is 1 iff the number of
previous inputs equal to 1, is even” s0 | 1 s1 | 0

0

1

1

0

Ex. 2

R: “the output is 1 iff some future input is 1”

No solution.

Ex. 3

R: “The output has infinitely many 1’s if the input has infinitely many 1’s”.

Various solutions (e.g. copying the input, outputting always 1,. . . ).
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Examples (cont.)

Ex. 4

R: “The output has finitely many 1’s iff the input has infinitely many 1’s”.
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Examples (cont.)

Ex. 4

R: “The output has finitely many 1’s iff the input has infinitely many 1’s”.

on 0ω the output should contain at least one 1, say after k1 steps;

on 0k110ω the output should contain at least one more 1, say after
another k2 steps;

In the limit: on 0k110k21 · · · the output will contain infinitely many 1’s.
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Church’s problem and logic

Specifications

Specification R ⊆ ({0, 1}{0, 1})ω: finite description, e.g. Büchi automaton or
MSO.

Trees

Synthesis is concerned with trees:

t : {0, 1}ω → Σ

Controller C : {0, 1}∗ → {0, 1} is a
subset of the tree.

0

1

1

0 1

0

level

...

Controller synthesis

The existence of a controller C satisfying property R can be expressed by an
MSO formula over the infinite binary tree. Rabin’s theorem on the decidability
of MSO provides the decidability of controller synthesis. If a controller C
exists, then it is a finite automaton.
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Church’s problem and logic

The existence of a controller C satisfying property R can be expressed by an
MSO formula over the infinite binary tree. Rabin’s theorem on the decidability
of MSO provides the decidability of controller synthesis. If a controller C
exists, then it is a finite-state automaton.

Proof.

Construct MSO formula ϕR that is satisfiable over the infinite binary tree iff
there exists a controller C satisfying R:

Using a monadic quantifier ∃Z: guess the successor of each node at even
level (circle nodes, choosing as output either 0 or 1).

Z induces a subtree: take all successors of square nodes, and only one
Z-successor of circle nodes.

Using Büchi-Elgot-Trakhtenbrot’s theorem, express that R is satisfied
along every infinite path in the subtree induced by Z.

If MSO formula ϕ is satisfiable, then it has a regular tree model: tree that is
the unfolding of a finite automaton.
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Church’s problem and logic

Example

The output has infinitely many 1’s if the input has infinitely many 1’s.

∃X0 ∃X1 ∃Z :

X0 = even level nodes, X1 = odd level nodes,

root ∈ Z,
∀x ∈ Z (if x on odd level, then both children in Z),

∀x ∈ Z (if x on even level, then exactly one child in Z),

∀P ⊆ Z (if P is infinite path starting at root with infinitely

many right edges from odd nodes, then it has infinitely many

right edges from even nodes)

s

0 1

0 1

0 1 s t

0, 1

1
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Church’s problem and games

Graph games

Game arena: graph G = (V,E) with vertex set V , edge set E.

Two players P0 (system) et P1 (environment). The set of vertices is
partitioned into two disjoint subsets: V0 belongs to P0 and V1 to P1.

Play = path in the graph G. Owner of the current vertex chooses the
outgoing edge.

Winning condition = set of plays in G.
Parity game: priorities p : V → {0, . . . , d}. A play is winning if the highest
priority visited infinitely often is even.

Strategies: σ0 : V ∗V0 → V , σ1 : V ∗V1 → V .

Strategy σ0 is winning for P0 from v ∈ V if every play from v that is
consistent with σ0 is winning.

Vertex v ∈ V is winning for P0 if P0 has a winning strategy from v.

W0 = set of winning vertices of P0 (P0’s winning region). Symmetric: W1

for P1.

Game solution

Solving a game means computing the winning regions W0, W1 and
corresponding winning strategies.
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Church’s problem and games

Game solution

Solving a game means computing the winning regions W0, W1 and
corresponding winning strategies.

Strategies

“Nice” strategies are

positional (= memoryless)

σ0 : V0 → V, σ1 : V1 → V ,

or finite-memory

σ0 : (V0 ×M)→ V, σ1 : (V1 ×M)→ V ,

for some finite set M (with suitable update function).

Determined games

A (graph) game is determined if V = W0 ∪W1 (this actually partitions V if
the game is zero-sum).
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Example (parity)

a

1

b

2

c1

ed f

g

23 4

2

Plays won by P0: ababa . . ., cegfcegf . . ., cece . . ..
Plays won by P1: aa . . ., cegdcegd . . .
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Example (parity)

a

1

b

2

c1

ed f

g

23 4

2

W0 = {c, d, e, f, g}, W1 = {a, b}

Plays won by P0: ababa . . ., cegfcegf . . ., cece . . ..
Plays won by P1: aa . . ., cegdcegd . . .
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Büchi-Landweber

Church’s problem as graph game (McNaughton 1966,
Büchi-Landweber 1967)

Recall: specification R ⊆ ({0, 1}{0, 1})ω described as (non-deterministic)
Büchi automaton.

McNaughton’s theorem: non-deterministic Büchi automaton for R can be
transformed into a deterministic parity automaton over Σ = {0, 1, 0, 1}:

AR = 〈S,Σ, s0, (
a−→)a∈Σ, `〉, R = L(AR)

Wlog state set S partitioned into S = S# ∪ S2:
from S# only transitions with {0, 1}, from S2 only transitions with {0, 1}.
Initial state s0 ∈ S2.

Player P0 owns V0 = S#, player P1 owns V1 = S2.

Play s0
a0−→ s1

a1−→ · · · = maximal path in AR.

A play is winning for P0 iff the path satisfies the parity condition =⇒
parity game!
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Games we play

Parity games: references

An excellent survey with a simplified proof (over countable graphs):
W. Zielonka, “Infinite Games on Finitely Coloured Graphs with
Applications to Automata on Infinite Trees”.
Theor. Comp. Sci. 1998(200):135-183.

References: Büchi-Landweber (1969), Rabin (1969), Gurevich-Harrington
(1982), Muchnik (1984), Emerson-Jutla (1988), Mostowski (1991),
McNaughton (1993), Muller-Schupp (1995).

Parity games: complexity

Parity games are determined, and winning strategies are positional
(memoryless). On finite graphs, deciding the winner is in NP ∩ co-NP.

Still open: are parity games in PTime? It is so for restricted classes of
graphs, like bounded tree-width, bounded clique-width graphs.

Classical algorithm (McNaughton-Zielonka): O(nd+O(1)).

Recent breakthrough: O(nlog(d)+O(1)) (quasi-polyonomial)
[Calude-Jain-Khoussainov-Li-Stephan 2016, Jurdzinski-Lazic 2017].
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Simple games on finite graphs

Reachability games

A reachability game G = (V = V0 ∪ V1, E) has winning condition described by
a set F ⊆ S of final nodes. A path is winning for P0 if it visits F at least once.

Example

a b

c

ed f

g

F = {b, d}
W0 = {b, d, g}

F = {a, f}
W0 = V

34 / 104



Reachability games

Attractors

Attr00(F ) = F

Attrn+1
0 (F ) = Attrn0 (F ) ∪

{v ∈ V0 : ∃w ∈ Attrn0 (F ), (v, w) ∈ E} ∪
{v ∈ V1 : ∀w s.t. (v, w) ∈ E : w ∈ Attrn0 (F )}

Attr00(F ) ⊆ Attr10(F ) ⊆ · · · ⊆ Attr
|V |
0 (F )

Attri0(F ) is the set of vertices from which P0 can reach F after at most i
moves.
W0 = Attr

|V |
0 (F ) is the winning region of P0 (smallest fixpoint), and

W1 = V \ Attr
|V |
0 (F ) is the winning region of P1 (trap for P0).

Strategies

Reachability games are determined and have positional winning strategies:
attractor strategy for P0 and trap strategy for P1.
Both the winning regions and winning strategies can be computed in
polynomial time.
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Reachability games

Example

a b

c

ed f

g

F = {b, c}
Attr00(F ) = {b, c, f}
Attr10(F ) = {b, c, f, g, d}
Attr20(F ) = {b, c, f, g, d, e}

σ0(f) = c, σ0(g) = f
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Büchi games

A Büchi game G = (V = V0 ∪ V1, E) has winning condition described by a set
F ⊆ S of final nodes. A path is winning for P0 if it visits F infinitely often.

Algorithm

Attr+0 (F ): set of states from which P0 can reach F in at least one move.
We can compute Attr+0 (F ), as well as a positional strategy, in polynomial
time.

X(i): set of states from which P0 can go through F at least i times
(without counting the starting state).

X(0) = V, X(i+1) = Attr+0 (X(i) ∩ F )

W0 = ∩i≥1X
(i)

X(0) ⊇ X(1) ⊇ · · · : some k with X(k) = X(k+1) =: W0.
W0 is a largest fixpoint and W0 = Attr+0 (W0 ∩ F ).

Strategies

Büchi games are determined and have positional winning strategies: Attr+0
strategy for P0 and trap strategy for P1 (positional).
Both winning regions / strategies can be computed in PTime.
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Parity games

McNaughton-Zielonka recursive algorithm

Input: Parity game G = (V0, V1, E), p : V → {0, . . . , k}
Output: Parity(G) = (W0,W1)

if V = ∅ then
return (∅, ∅)

i := k mod 2 ; /* parity of maximal priority */

U := {v ∈ V : p(v) = k} ; /* vertices of maximal priority */

A := Attri(U);
(W ′i ,W

′
1−i) = Parity(G \A);

if W ′1−i = ∅ then
Wi := W ′i ∪A ;
W1−i := ∅ ;
return (Wi,W1−i);

else
B := Attr1−i(W

′
1−i); /* Attractor in G */

(W ′′i ,W
′′
1−i) = Parity(G \B);

Wi := W ′′i ;
W1−i := B ∪W ′′1−i ;
return (Wi,W1−i);

end
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Example

a : 1 b : 2

c : 1

e : 2d : 3 f : 4

g : 2

A = Attr0(f) = {f, g}
Recursive call on G \A yields W ′0 = {c, d, e} and W ′1 = {a, b}.
B = Attr1({a, b}) = {a, b}
Recursive call on G \B yields W ′′0 = {c, d, e, f, g} and W ′′1 = ∅, so
W0 = W ′′0 and W1 = B.
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In practice

Complexity: parity games

Recursive algorithm: n = |V |, m = |E|, k = number of priorities

Running time of Parity:

Tn,m(k) ≤ Tn,m(k−1)+Tn−1,m(k)+O(m+n) =⇒ Tn,m(k) ∈ O(m·nk)

O. Friedmann, Recursive algorithm for parity games requires exponential
time. RAIRO - Theor. Inf. and Applic. 45(4): 449-457 (2011)

Current algorithms (Khoussainov et al., Jurdzinski et al.):
quasi-polynomial time, polynomial space

Synthesis

LTL and CTL∗ games: 2ExpTime-c.

CTL games: ExpTime-c.

GR(1) games (e.g. ”infinitely often request −→ infinitely often grant”):
ExpTime

Tools

GAVS+ (TU Munich), Acacia+ (U. Bruxelles), BoSy (bounded synthesis,
U. Saarbrücken) 40 / 104



Supervisory control: Ramadge/Wonham

Setting

We are given

a “plant” P (deterministic finite automaton),

a partition of the set Σ of actions into controllable actions from Σsys and
uncontrollable actions from Σenv,

a (regular) specification Spec.

Compute controller (supervisor) C that restricts only controllable actions, while
satisfying Spec.

Plant P

Controller C

eventscontrol 
actions
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Example

Plant P with Σenv = {b}:

0 1

a
a

b

Spec: at most 2 consecutive a’s

Controller: observes the dynamics of the plant. Cannot restrict
uncontrollable actions:

C : Path(P )→ 2Σ s.t. Σenv ⊆ C(w) for all w

Controlled plant: P × C must satisfy Spec.

Examples: C1 counts a up to 2 and P × C1 = ((a+ aa)b)∗(ε+ a+ aa).
Or C2 never allows a, so P × C2 = ∅.

P × C (synchronized product)

P = 〈Q,Σ,−→P , q0, Q〉, C : Path(P )→ 2Σ

P × C = 〈Q× Σ∗,Σ,−→, (q0, ε), F × Σ∗〉
(q, w)

a−→ (q′, wa) if q
a−→P q′, a ∈ C(w)
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Ramadge and Wonham

Safety specifications

Given:

A finite-state automaton (plant) P = 〈QP ,Σ,−→P , q0,P , QP 〉 over
alphabet Σ partitioned into controllable actions Σsys and uncontrollable
actions Σenv.

A finite-state automaton (specification) S = 〈QS ,Σ,−→S , q0,S , QS〉, all
states are final (safety).

Compute C such that:

P × C ⊆ S,

w ∈ C and a ∈ Σenv implies wa ∈ C,

Other possible requirements: C is non-blocking, maximal permissive, . . . .

Solution

Build the product P × S.

Remove all states (qP , qS) such that for some w ∈ (Σenv)∗:

qP
w−→P · is defined, but qS

w−→S · is undefined.

Add self-loops with Σenv, if necessary. The output is the most permissive
controller C.
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Example 1

P :

0 1

a
a

b

S :

0′ 1′ 2′

b
a

a

b

b

C = P × S :

0, 0′ 1, 1′ 1, 2′

a

a

b

b
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Example 2

P :

0 1

a
a

b

S :

0′ 1′ 2′ 3′

b a
a

a

b

b

a

P × S :

0, 0′ 1, 1′ 1, 2′ 1, 3′

a

a

b

b

a

a
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Example 2

P :

0 1

a
a

b

S :

0′ 1′ 2′ 3′

b a
a

a

b

b

a

C :

0, 0′ 1, 1′ 1, 2′

a

a

b

b

b
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From supervisory control to games

Given: plant P = 〈Q,Σ,−→, q0, Q〉 over alphabet Σ = Σsys ∪̇ Σenv.

Build game arena (V0, V1,−→):

Node set
V0 = Q and V1 = {(q, a) : a ∈ Σsys and q

a−→ is defined} ∪Q× {⊥}.
Edge set:

q −→ (q, a) if q
a−→ is defined,

q −→ (q,⊥),

(q, a) −→ q′ if either q
a−→ q′, or q

b−→ q′ for some b ∈ Σenv ,

(q,⊥) −→ q′ if q
b−→ q′ for some b ∈ Σenv . Otherwise, (q,⊥) −→ q.

Winning condition: specification S.
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From supervisory control to games

P × S :

0 1 2 3 ≤ 2 consecutive a
a a

b
b

a

a

b

0

0,⊥ 0, a 1,⊥

1

1, a

3, a

3

3,⊥ 2, a

2

2,⊥ Avoid state 3
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II. Distributed synthesis
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Distributed systems

Models

Processes with links. A process is e.g. finite-state automaton.

Links as channels

Links are channels and processes have send and receive operations:
communicating automata, message sequence charts. Turing powerful.

Links as synchronization

Links are shared variables and processes can synchronize (rendez-vous):
distributed automata, Mazurkiewicz traces, event structures.

Regular languages.
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Pnueli & Rosner, 1990

Synthesis setting

Synchronous processes (global clock), exchange finite information.

P1

In1

Out1

P2

In2

Out2

M specification R ⊆ Aω

A = In1 × In2 ×M× Out1 × Out2

Problem: given an architecture over n processes and a regular language
R ⊆ Aω, decide if there exist devices P1, . . . , Pn such that all executions
are in R.

Problem is decidable iff the architecture is a pipeline:

P1 P2 Pn
In Out

Complexity: non-elementary.

50 / 104



Pnueli & Rosner, 1990

Synthesis setting

Synchronous processes (global clock), exchange finite information.

P1

In1

Out1

P2

In2

Out2

M specification R ⊆ Aω

A = In1 × In2 ×M× Out1 × Out2

Problem: given an architecture over n processes and a regular language
R ⊆ Aω, decide if there exist devices P1, . . . , Pn such that all executions
are in R.

Problem is decidable iff the architecture is a pipeline:

P1 P2 Pn
In Out

Complexity: non-elementary.

50 / 104



Distributed synthesis: synchronous case

Undecidable architectures

P0 P1

P0 P1

P2

P0

P1 P2

Undecidability: reasons

Processes have different knowledge about the moves of the (global)
environment. Left example: P0, P1 have incomparable information.
Information fork (Finkbeiner/Schewe 2005).

No compatibility required between architecture and specification.
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Distributed synthesis: synchronous case

Undecidability

P0

0n

0n1pn

P1

0n

0n1qn

On input 0n the specification will force P0, P1

to output 0n1n.

How can we enforce this with a regular
specification S?
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P0

0n

0n1pn

P1

0n

0n1qn

On input 0n the specification will force P0, P1

to output 0n1n.

How can we enforce this with a regular
specification S?

Trick: using synchronicity, S can relate the
outputs of P0 and P1

S = S1 ∪ S2

S1 = {(0n, 0n1p, 0n, 0n1q) : n ≥ 0, p = q}
S2 = {(0n, 0n1p, 0n+1, 0n+11q) : n ≥ 0, q = p+ 1}

If in addition, P0 and P1 must output p0 = q0 = 0, we get pn = qn = n for all
n ≥ 0.
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Distributed synthesis: synchronous case

Information fork (Finkbeiner/Schewe 2005)

Process P is (at least) as well informed as process P ′ if the environment
cannot transmit information to P ′ without P knowing about it.

Information fork: two processes with incomparable information.

Example

P1 P2 Pn

Pk is better informed than Pk+1.
P0 P1 P2

P1 and P2 have incomparable
information.

Finkbeiner/Schewe 2005

Synchronous synthesis is decidable iff there is no information fork.
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Distributed synthesis: synchronous case

Local specifications (Madhusudan/Thiagarajan 2001)

Undecidability for synchronous case due to global specifications? Not only.

Same as before, P0 and P1 should output 0n1pn and 0n1qn , with
pn = qn = n.

“Checking” pn = qn and qn+1 = pn + 1 is now done by the choice of the
environment:
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Distributed synthesis: synchronous case

Local specifications (Madhusudan/Thiagarajan 2001)

Undecidability for synchronous case due to global specifications? Not only.

Same as before, P0 and P1 should output 0n1pn and 0n1qn , with
pn = qn = n.

“Checking” pn = qn and qn+1 = pn + 1 is now done by the choice of the
environment:

P0
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P1

0n1p

P2
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0n$0p 0n$0p

P0

0ninc

P1

0n1p′

P2

0n+11p′+1

0n$0p′ 0n+1$0p′+1

Why is P0 forced to output p = p′ on given n?
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Distributed synthesis: synchronous case

Local specifications (Madhusudan/Thiagarajan 2001)

Undecidability for synchronous case due to global specifications? Not only.

Same as before, P0 and P1 should output 0n1pn and 0n1qn , with
pn = qn = n.

“Checking” pn = qn and qn+1 = pn + 1 is now done by the choice of the
environment:

P0

0neq

P1

0n1p

P2

0n1p

0n$0p 0n$0p

P0

0ninc

P1

0n1p′

P2

0n+11p′+1

0n$0p′ 0n+1$0p′+1

The specification {(0n$0p, 0n 1p) : n, p} forces P1 to ”accept” from P0 only
one value of p, for given n.
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Synchronous case: decidability

Pnueli/Rosner 1990

Synthesis is decidable on pipelines, with non-elementary complexity.

P0 P1 Pn
In Out

Proof idea

P00, 1 P1 0, 1
0, 1

P0 : {0, 1}∗ → {0, 1}
P1 : {0, 1}∗ → {0, 1}
P0 : {0, 1}∗ → {0, 1}∗

P0 ◦ P1 : {0, 1}∗ → {0, 1} P0 ◦ P1(w) = P1(P0(w))

If S is a regular tree language defining a set of functions {0, 1}∗ → {0, 1}, then
there is a regular tree language S′ defining a set of functions {0, 1}∗ → {0, 1}
such that

P1 ∈ S′ iff ∃P0 : {0, 1}∗ → {0, 1} : P0 ◦ P1 ∈ S
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Pipeline: proof

Automata construction (Kupferman/Vardi)

From a non-deterministic parity tree automaton accepting S one constructs an
alternating parity tree automaton accepting S′.

Strategy tree: binary tree labelled by strategy outputs.

root

S

1, b 1, b

s

s1 s2

x

0 1

0 1 0 1

root

S′

b′ b

s

tt {s1, s2}

x′

0 1

0 1 0 1
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III. Distributed control:

asynchronous case
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Synchronous/asynchronous

Pnueli & Rosner model has synchronous communication: at each step all
controllers make a transition. Good for hardware systems.

Asynchronous communication: each controller progresses at own speed.

Information

In the Pnueli & Rosner model: controllers do not exchange information beyond
the amount allowed by the specification.

P0

P1 P2

M1 M2

Rem.: Adding information to the mes-
sages sent by P0 to P1, P2 (beyond
M1,M2) makes the synthesis problem
decidable here.

58 / 104



Asynchronous model? Which one?

Distributed automata

Finite set of processes P

Process p has finite set of states Sp.

Distributed alphabet of actions 〈Σ, dom : Σ→ (2P \ ∅)〉

Action a synchronizes only processes in dom(a):

Transition relations
a−→ ⊆

∏
p∈dom(a) Sp ×

∏
p∈dom(a) Sp
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Finite set of processes P

Process p has finite set of states Sp.

Distributed alphabet of actions 〈Σ, dom : Σ→ (2P \ ∅)〉

Action a synchronizes only processes in dom(a):

Transition relations
a−→ ⊆

∏
p∈dom(a) Sp ×

∏
p∈dom(a) Sp

−→ exchange of information among processes in dom(a) while executing a
(rendez-vous synchronization)
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Example

Compare-and-swap

CAS (T : thread, x: variable; old, new: int).

If the value of x is old, then replace it by new, and return 1; otherwise do nothing
with x, and return 0.

Multi-threaded programs as distributed automata

One process per thread T and per shared variable x.

Example

compare-and-swap   CAS  (T,x,old,new)
if the value of x is old, then replace it by new; 
otherwise do nothing

y =  CAS (T,x,old,new)

T x

s old

news’

s v

v

y =  CAS (T,x,old,new)

T x

s’’
v      old6=

Exchange of information:
in state s′ we have y = 1; in state s′′ we have y = 0.
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Distributed automata

The language of the automaton

The (regular) language of the product automaton.

Regular trace languages

A regular, comm-closed language L ⊆ Σ∗:

u ab v ∈ L iff u ba v ∈ L ,

for all u, v ∈ Σ∗, dom(a) ∩ dom(b) = ∅.
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Trace languages

Mazurkiewicz traces

4 3

1 2a 2a

c

4 3

1 2

b

4 3

1 2

d4 3

1 2
Distributed alphabet
〈Σ, dom : Σ→ (2P \ ∅)〉

P = {1, 2, 3, 4}
Σ = {a, b, c, d}
dom(a) = {1, 2},
dom(b) = {2, 3}, . . .

c a b a

c

b

a

Hasse diagram

= [cabacba]
= [cababca]

Mazurkiewicz trace =
labelled partial order
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Zielonka’s Theorem

[Zielonka 1989]

Construction of deterministic distributed automaton for every regular
comm-closed language.

Crux

Finite gossiping (= knowledge exchange between processes).

Complexity

From a deterministic finite-state automaton of size s, an equivalent distributed

automaton on p processes with 4p4 · sp
2

states can be constructed.
[Genest, Gimbert, M., Walukiewicz 2010]
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Motivation

Example

SDN (software defined networking): given a network and a specification,
synthesize local rules for routing messages such that all behaviours
complying with the rules satisfy the specification. For example, depending
on failures a node can decide to forward messages to a subset of its
neighbors, only.

Abstract problem:
Given a distributed automaton A (“network”) and a (regular) specification
S, look for another distributed automaton C (“local rules”) such that

A× C � S

Warning...

The above problem is undecidable, unless S is comm-closed (Stefanescu,
Esparza, M., 2003). For comm-closed S use Zielonka’s theorem for
constructing equivalent C.
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Distributed automata: not that easy to construct

Zielonka (1987)

Every regular, comm-closed language can be recognized by some deterministic,
distributed automaton.
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Distributed automata: not that easy to construct

Zielonka (1987)

Every regular, comm-closed language can be recognized by some deterministic,
distributed automaton.

4 3

1 2a 2a

c

4 3

1 2

b

4 3

1 2

d4 3

1 2

Build a distributed automaton for the trace language ((b+ c)(a+ d))∗.
A deterministic finite-state automaton needs only 3 states.
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c

((b+ c)(a+ d))∗
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cab

((b+ c)(a+ d))∗
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cabd

((b+ c)(a+ d))∗
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cabdc

((b+ c)(a+ d))∗
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Good

cabdca

((b+ c)(a+ d))∗
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Good Bad

cabdc a d

((b+ c)(a+ d))∗
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Distributed automata: not that easy to construct

Example: ((b+ c)(a+ d))∗

4 3

1 2a 2a

c

4 3

1 2

b

4 3

1 2

d4 3

1 2

4

3

2

1

c

c a

a
b

b

a

a

c

c

b

b

a

a

Bad

c a b a

c

b

a
Last a sees bad b, c:
both are in the view of
processes 1 and 2.
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1 2a 2a
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1 2

b
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4

3

2

1

c

c a

a
b

b

a

a

c

c

b

b

a

a

Bad

First idea: each process remembers its last action.
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Example: ((b+ c)(a+ d))∗

4

3

2

1

c

c a

a
b

b

a

a

c

c

b

b

a

a

Bad

4

3

2

1

c

c a

a
b

b

a

a

c

c

b

b

a

a

Good

d

d

First idea: each process remembers its last action. When synchronizing,
processes know about the previous action of the other process.

How can process 1 know that between its first two a’s there was a b? By
communicating with process 2: the second a is only possible because
process 2 did a b since the last a.

Not sufficient: last d changes Bad into Good, but...

In both cases, upon executing the last a, the last action of
process 1 was c, and the last action of process 2 was b.
Last d is “invisible”.
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Example: ((b+ c)(a+ d))∗

4

3

2

1

Bad

c−

c− a−

a c

b−

b a

a b

a a

c a

c c

b b

b a

a b

a c

4

3

2

1

Good

d c

d bc−

c− a−

a c

b−

b a

a b

a a

c a

c c

b d

b a

a b

a c

Second idea: each process p remembers its last action and, after a sync
with process q, the previous action of q.

Does not work either: processes 3 and 4 do not have different information
upon executing last d.
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Example: ((b+ c)(a+ d))∗
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1

Bad

c−

c− a−

a c

b−

b a

a b

a a

c a

c c

b b

b a

d c

d b
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1

Good

a a

a c

c−

c− a−

a c

b−

b a

a b

a a

c a

c c

b b

b a

d c

d b

Second idea: each process p remembers its last action and, after a sync
with process q, the previous action of q.

Does not work either: processes 3 and 4 do not have different information
upon executing last d.

... the solution here is actually as complicated as the general case:
clever finite-memory time-stamping (sort of finite version of
Lamport’s happened-before relation)
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Zielonka’s theorem: acyclic case

Acyclic case

Assume that |dom(a)| ≤ 2 for every a ∈ Σ and that the communication
graph CG is acyclic:

CG: undirected graph where vertices = processes, and edges
between processes that share some action

Wlog. CG is a tree.

Input: finite-state automaton A = 〈S,Σ,∆, s0, F 〉 recognizing a regular,
comm-closed language L ⊆ Σ∗.

We build an equivalent polynomial-size distributed automaton
B = 〈{Sp}p∈P, sin, {δa}a∈Σ〉 with

|Sp| = |S|2, for each process p

[S. Krishna, M.: A quadratic construction for Zielonka automata with acyclic
communication structure. Theor. Comput. Sci. 503: 109-114 (2013)]
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Diamond property

A finite-state automaton is diamond if for every state s, and every a, b ∈ Σ
such that dom(a) ∩ dom(b) = ∅:

s
ab

=⇒ s′ iff s
ba

=⇒ s′

The minimal automaton of a regular, comm-closed language is diamond.

Lemma

Given a diamond automaton A = 〈S,Σ,∆, s0, F 〉, we can compute a table
D : S3 × 2P → S such that for all states s1, s2, s3 ∈ S, every set of processes
X ⊆ P and all u, v, w with dom(v) ⊆ X, dom(w) ∩X = ∅:

s0 s1

s2

s3

D(s1, s2, s3, X)
u

v

w

w

v
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Zielonka’s theorem: acyclic case

Each process p ∈ P stores a pair of states of A: we write 〈s, s′〉p to denote a
pair stored by process p.

the first state stored by p is the state at which it synchronized the last
time with its parent p in CG;

the second state of p stores the state reached by the automaton A on the
current p-view.

p

p

u

v

w

p-view = p-view in p-view, not yet in p-view

in p-view, not yet in p-view

〈s1, s′〉p

a

〈s′, s′〉p

〈s1, s′1〉p

〈s2, s′2〉p
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Zielonka’s theorem: acyclic case

Construction

Starting state of p: (sin)p = 〈s0, s0〉p.

Transition function for a ∈ Σ:

if dom(a) = {p}: easy, only local update

〈s, s′〉p
a−→ 〈s,∆(s′, a)〉p

if dom(a) = {p, p} and p is the parent of p in CG: apply diamond lemma to
combine information stored by p, p

(〈s1, s
′
1〉p, 〈s2, s

′
2〉p)

a−→ (〈s′, s′〉p, 〈s2, s
′〉p) ,

where s′ = ∆(s, a), s = D(s2, s′1, s
′
2, X(p)) and X(p) ⊆ P is the subtree of

CG rooted at p.

Final states F ⊆
∏

p∈P Sp: apply diamond lemma to combine information
up to the root process and determine the final state.
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Control problem for distributed automata
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Motivation

SDN example

Given a network and a specification, synthesize local rules for routing messages
such that all behaviours complying with the rules satisfy the specification - no
matter which nodes or links may fail (−→ uncontrollable events).
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Control problem: statement

Ramadge & Wonham

Given: distributed automaton P (“plant”) with two kinds of actions,
controllable actions (or system actions, Σsys) and uncontrollable actions
(or environment actions, Σenv); and a specification S.

Compute local controllers, one for each process. A local controller must
allow every uncontrollable action. It can disallow controllable actions only.

In essence: we look for a distributed controller C.

Notice: local controllers exchange information (as in a distributed
automaton).
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Supervisor control problem for distributed automata

Given a distributed automaton P (plant) with two kinds of actions:
controllable (system) and uncontrollable (environment), and a
specification S.

Find a distributed automaton (controller) C such that P × C ⊆ S.
Controller must allow every uncontrollable action.

Remark

Decidability status: open.
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Supervisor control problem for distributed automata

Given a distributed automaton P (plant) with two kinds of actions:
controllable (system) and uncontrollable (environment), and a
specification S.

Find a distributed automaton (controller) C such that P × C ⊆ S.
Controller must allow every uncontrollable action.

The product P × C is the usual synchronized product of automata, here
process-wise.

Remark

Decidability status: open.
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Example 1

Shared bit game

Two processes P0, P1, that do not communicate.

Pi receives an uncontrolable bit ui and has to produce a controlable bit ci.

Winning condition: c1 = u0 or c0 = u1.

How to win

Distributed strategy: P0 plays c0 = u0 and P1 plays c1 = 1− u1.
Winning, since either u0 = u1, so u1 = c0. Or u1 = 1− u0, so u0 = c1.
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Example 2

Arbiter game

A

C1 C2
. . . Cn

in

fin wait

stop

relk

req

grantk

Ck

in k

grantk

relk...

A

req,stop: local uncontrolable actions, grant,rel: shared controlable actions.
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Example 2

Arbiter game

A

C1 C2
. . . Cn

in

fin wait

stop

relk

req

grantk

Ck

in k

grantk

relk...

A

req,stop: local uncontrolable actions, grant,rel: shared controlable actions.

Strategy of A: propose synchronization with every Ck.
Winning, if the scheduler is fair. 85 / 104



Example 3

Plant:

p

q q

r

•c

a α

•
d

b β

Process q: (ab+ ba)(α+ β)

Controllable actions: c and d

Specification:

p

q

r

p

q

r

•c

a α

b
•
d

b β

a

Plant is controllable: through communication with q, both processes p and r
can learn about the order between a and b. If e.g. a preceded b, then p’s
controller allows c and q’s controller disallows d.
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Control for distributed automata: game version

Strategies σ = (σp)p∈P

Strategy of process p: mapping σp : Viewsp → 2Σsys
p .

c

b

c

a

d

b b

d

a

p

q

r

Σsys
p = Σsys ∩ {a : p ∈

dom(a)}: set of controlable
actions involving p

Viewsp: set of p-views of
process p (causal memory)

Before last b:

viewp = viewq = [cbadcba], viewr = [cbadbd]

σ-plays on A
If t is a σ-play and ta ∈ L(A) with a uncontrollable, then ta is a σ-play.

If t is a σ-play, ta ∈ L(A) with a controllable and a ∈ σp(t) for all
p ∈ dom(a), then ta is a σ-play.
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If t is a σ-play and ta ∈ L(A) with a uncontrollable, then ta is a σ-play.

If t is a σ-play, ta ∈ L(A) with a controllable and a ∈ σp(t) for all
p ∈ dom(a), then ta is a σ-play.
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Distributed games: plays

Example

σq(T ) = {a, b}, σp(T ) = {a}, σr(T ′) = {b}.

c

b

c

a

d

b

d

a

p

q

r

Winning conditions

Most general: ω-regular, comm-closed ; repeating global states.

Here: local conditions, one for each process (reachability, Büchi, . . . ).

A maximal play is winning if every process satisfies its local condition.
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Distributed control vs. Pnueli & Rosner

Partial information

In both cases: games with partial knowledge.

In distributed control, partial knowledge is limited to concurrency: two
synchronizing processes get full information about the other one.

Distributed control: local controllers can exchange a priori unbounded
knowledge (= process views). Unlike Pnueli & Rosner, where the
specification tells what they are allowed to exchange. The crux here is to
show that there is a bound on the additional knowledge exchanged by
controllers.

(Un)decidability?

Unlikely to get undecidability of distributed control. Reason: the game is
as honest as possible.

Warning: distributed control problem gets undecidable if...
controllers do not exchange full information (loosely cooperating), or
their strategies are based only on local histories, or
the specification is not comm-closed.
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Decidability: partial results

[Madhusudan & Thiagarajan 2002]

Decidability for restricted local strategies:

clocked: depending only on time, not history

synchronization-rigid: each local strategy proposes either local actions or
communication with the same process.

[Gastin & Lerman & Zeitoun 2004]

Decidability for restricted communication architecture: co-graphs.

[Madhusudan & Thiagarajan & Yang 2005]

Decidability for restricted distributed automata: every process misses only
bounded knowledge. MSO specifications.

[Genest & Gimbert & M & Walukiewicz 2013]

Decidability for acyclic process communication and local reachability conditions
(blocking). Shared actions controllable.
Complexity: non-elementary (complete). EXPTIME-complete for depth one.

90 / 104



Decidability for acyclic process communication

Setting

Shared actions are binary. Communication graph is acyclic.

Shared actions are uncontrollable. Not a restriction.

Each process has its own parity specification.

Theorem (M. & Walukiewicz, 2014)

For a given plant (distributed automaton) A and local parity specification, it is
decidable whether a controller (distributed automaton) C exists s.t. the
controlled plant A× C satisfies the parity specification.
Complexity is non-elementary, EXPTIME-complete for depth one.
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Proof

Main idea

Induction over the processes: simulate a leaf process by its parent.

Proof ideas

We can assume that A has a bound on the number of local actions of
process r between two consecutive synchronizations with q.

Argument: if A can be controlled to satisfy a local parity specification,
then the controller doesn’t need to visit twice the same r-state during an
r-local run.

In AO, process q simulates process r by choosing an r-local strategy, until
simulating the next synchronization between q and r.

r-local strategy: f : (Sr)∗ → Σsys
r
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Proof

Simulating process r by process q

aq, a
′
q controllable q-actions, bq uncontrollable q-action

f : (Sr)∗ → Σsys
r is r-local strategy

only q-actions ch(·) are controllable in AO

ch(f): process q chooses r-local strategy
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Distributed control: depth 1

Setting

We assume here that the communication is over a tree of depth one: call the
root q, and its children r1, . . . , rk.

Rem.

Recall: only local actions can be controllable. So any strategy σ = (σp)p∈P is
such that σp always proposes one local p-action.

Local plays and strategies

Σloc
r = {a ∈ Σ : dom(a) = {r}}, set of local r-actions.

Σq,r = {a ∈ Σ : dom(a) = {q, r}}.
Local r-play: word from (Σloc

r )∗.

r-context: play ending in Σq,r.

Local r-strategy σr[t] : (Σloc
r )∗ → Σloc

r from r-context t:

σr[t](x) := σr(tx) for all x ∈ (Σloc
r )∗

Key lemma

We can assume that each local r-strategy σr[t] is positional.
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From the distributed control problem to a sequential game
Root process q, leaves r1, . . . , rk

Root〈sq

′

, (sj , fj)1≤j≤k〉

Env〈sq, a, (sj , fj)1≤j≤k〉
ch(a)

∀a ∈ Σsys
q

c

∀c ∈ {a} ∪ Σenv
q : sq

c−→ s′q

Leaf〈sq

′

, (sj , fj)1≤j<i, si

′′

, (sj , fj)i<j≤k〉

b, s′i ∀b ∈ Σq,ri :

si
fi; s′i,

(sq, s
′
i)

b−→ (s′q, s
′′
i )

ch(fi)

Root q proposes a local, controllable action a

sq is state of root q, si is state of leaf ri,

fi is local positional ri-strategy

Some more bookkeeping to record the maximal ri-priority seen on the
local ri runs
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From the distributed control problem to a sequential game
Root process q, leaves r1, . . . , rk

Root〈sq ′, (sj , fj)1≤j≤k〉 Env〈sq, a, (sj , fj)1≤j≤k〉
ch(a)

∀a ∈ Σsys
q

c

∀c ∈ {a} ∪ Σenv
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si
fi; s′i,
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′
i)

b−→ (s′q, s
′′
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ch(fi)

Root q proposes a local, controllable action a

Environment either chooses a local action c for q

sq is state of root q, si is state of leaf ri,

fi is local positional ri-strategy

Some more bookkeeping to record the maximal ri-priority seen on the
local ri runs
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Complexity (general case)

Upper bound

The size of AO is exponential in the size of A: every reduction step increases
the size of the plant by an exponential. Overall complexity is non-elementary in
the depth n of the tree:

Tower(n) = 2Tower(n−1)

Matching lower bound: nested counters

level 1: 0, 1, . . . , 2n − 1

a0 · · · a0︸ ︷︷ ︸
n

#b0 a0 · · · a0︸ ︷︷ ︸
n−1

#a0b0 a0 · · · a0︸ ︷︷ ︸
n−2

# · · ·# b0 · · · b0︸ ︷︷ ︸
n

#

level 2: 0, 1, . . . , 22n

− 1

a1bin(0)a1bin(1) · · · a1bin(2n−1)#b1bin(0)a1bin(1) · · · a1bin(2n−1)# · · ·

level k: . . .

Turing machine with Tower(n) space bound.
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Level 1

Processes 1,2,3.

an0

an0

b0a
n−1
0

b0a
n−1
0

· · ·

· · ·

1

3

2

Environment can ask for a pair of bits: either ↑ (above) or ↗.

Thm.

The control problem over the architecture 1−−−−− 2−−−−− 3 is
Exptime-complete.
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What makes distributed control so difficult?

Branching and distributed automata

Unfolding of distributed automata: event structures.

Example

Σ = {a, b, c}, L = (a+ b)∗c Event structure:
a

cp

b

cq

c

a

a

a

b b b

c c

c c
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What makes distributed control so difficult?

Event structures - a solution?

The control problem for a distributed plant P reduces to the satisfiability of a
monadic second-order formula over the event structure of P [Madhusudan et
al.].

Proof

MSO formula ∃XA∃XB · · · ϕ, with quantifiers ranging over all subsets
A ⊆ Σsys

p , B ⊆ Σsys
q , . . ..

Set XA ∪XB ∪ · · · consists of all prime traces (“histories”) that are
compatible with the strategy σ = (σp)p∈P.

Prime trace belongs to XA, A ⊆ Σsys
p , if its maximal element has label

from {a ∈ Σ : p ∈ dom(a)} and σp([w]) = A.

Formula ϕ expresses that (1) every uncontrollable action is allowed by σ
and (2) that the winning condition is satisfied by every trace representing
a σ-play.
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Event structures - a solution?

Unfortunately not:

There exist distributed automata s.t. the associated event structure has
undecidable MSO theory.

Thiagarajan’s conjecture: the event structure of a distributed automaton
A has decidable MSO theory iff A has no concurrent loops (implies
“grid-free” unfolding).
Very recently disproved by Chalopin/Chepoi (August 2018), by exhibiting
A with grid-free unfolding, yet unbounded tree-width, hence undecidable
MSO theory.

Warning: Decidability of MSO is not necessary for deciding the control
problem.
Example: the control problem for distributed automata over 2 processes is
decidable, yet the MSO theory of the unfolding is undecidable.
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What makes asynchronous control so difficult?

From to

... and back?
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What makes asynchronous control so difficult?

Partial knowledge

A process p has only partial knowledge about other processes. What happens
in “parallel” to p may affect p’s future.

Taming partial knowledge: two examples

Acyclic case: parent of the leaf process r knows everything about r,
except for local behavior that can be resumed.

Missing knowledge is bounded:

Every event has at most n concurrent events (unless their processes never
meet again in the future).
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Conclusions

Synthesis

We saw Church’s formulation of the synthesis problem in the 50’s and the
interplay with logic on trees (Rabin’s theorem about MSO over the infinite
binary tree).

Alternative setting: control/supervisory theory (Ramadge & Wonham).

We saw some simple 2-player games, and McNaughton’s algorithm for
parity games.

We saw Pnueli and Rosner’s version of distributed synthesis and we
discussed why it is almost always undecidable: games with (very) partial
information - no communication between controllers.

We saw a second version of distributed synthesis, this time with
information exchange: control of distributed automata. Decidability of
control holds if the communication is acyclic, general case is open.
Note: related game model −→ Petri games (Finkbeiner, Olderog 2014).
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Conclusions

Control of distributed automata: open questions

Decidability of the general asynchonous control problem? Open.

When distributed control is decidable, we finally reason on trees. Is there
anything beyond?

Which parameters make the control problem difficult? How can we
capture missing knowledge in a systematic way?

We lack a good understanding of branching in the distributed case
(cf. Chalopin/Chepoi recent paper).
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