Games and controller synthesis - Reachability games

As a general rule, all game arenas in our exercises are *finite*.

Exercise 1

We reconsider the winning condition $\operatorname{Reach}(F_1) \wedge \operatorname{Reach}(F_2)$ for P_0 , where $F_1 \cap F_2 = \emptyset$. So P_0 wins a play if and only if the play visits both F_1 and F_2 .

Describe the winning strategies of both players and show that both need memory in order to win.

Hint : show that $X = \text{Attr}_0((F_1 \cap \text{Attr}_0(F_2)) \cup (F_2 \cap \text{Attr}_0(F_1))$ is the winning region W_0 of P_0 .

Exercise 2

We consider the following winning condition Win for P_0 , given two disjoint sets $F, B \subseteq V$.

A play π is won by P_0 if it reaches F without visiting B before. So $Win = (V \setminus B)^* F V^{\omega}$.

- 1. Adapt the attractor construction to this winning condition. What guarantees P_1 's winning strategy on the complement of the attractor?
- 2. Compute the winning regions on the following example, with $F = \{1, 2\}$ and $B = \{5, 6\}$:

Exercise 3

We consider the winning condition Win = Reach(F) \lor Avoid(B) for P_0 , where $F \cap B = \emptyset$. A maximal play π is won by P_0 if and only if π visits For avoids B. In other words, Win = $V^*FV^{\omega} \cup (V \setminus B)^{\omega}$.

We want to compute the winning regions W_0, W_1 , and winning strategies σ_0, σ_1 .

- 1. What is the winning condition for P_1 ?
- 2. Compute the winning regions for this game on the example in Exercise 2 with $F = \{4\}$ and $B = \{5\}$.
- 3. Give an example of a game with condition $\operatorname{Win}' = \operatorname{Reach}(F) \wedge \operatorname{Avoid}(B)$ and a vertex v that is winning for P_0 for condition $\operatorname{Reach}(F)$, and for condition $\operatorname{Avoid}(B)$, but not for Win.
- 4. Reduce the game with condition Win to a game on a larger arena, where the players remember which sets were visited. What is the winning condition of P_0 for the larger game?
- 5. Solve the game with condition Win as a *weak parity game*.

Exercise 4

We consider the winning condition Win = $(\text{Reach}(F_1) \land \text{Avoid}(B_1)) \lor$ (Reach $(F_2) \land \text{Avoid}(B_2)$) for P_0 , where the sets F_1, F_2, B_1, B_2 are pairwise disjoint. So a maximal play π is won by P_0 if and only if π visits F_1 and avoids B_1 , or it visits F_2 and avoids B_2 .

Compute the winning regions W_0, W_1 , and winning strategies σ_0, σ_1 .

Obligation games. Win is a boolean combination of reachability conditions. *Example*: visit either p and q and not r, or q and r and not p. Equivalent formulation:

- Win = \mathcal{F} , where $\mathcal{F} = \{F_1, \ldots, F_k\}, F_i \subseteq V$.
- A maximal play $\pi = v_0, v_1, \ldots$ is winning (for P_0) if $Occ(\pi) \in \mathcal{F}$. Notation: $Occ(\pi) = \{v \mid \exists i \text{ s.t. } v = v_i\}$ is the set of states visited by π .

Win: $\pi \in$ Win if and only if $\{2,7\} \subseteq Occ(\pi)$. In order to win, P_0 needs memory in state 1: she has to visit both 2 and 5.

Solution for obligation games: reduction to weak parity games.

Weak parity games.

- The game arena \mathcal{A} is equipped with a priority function $p: V \to \{0, \ldots, d\}: p(v)$ is the priority (color) of v.
- Win is the set of maximal plays such that the *biggest* priority is even. Formally:

 $\pi \in \text{Win}$ iff $\max\{p(v) \mid v \in \text{Occ}(\pi)\}$ is even

Example.

$$p(a) = p(e) = 0, \ p(b) = p(f) = 1, \ p(c) = p(g) = 2, \ p(d) = 3.$$

- $d \in W_1$ and $\operatorname{Attr}_1(d) = \{d, c, b\} \subseteq W_1$
- $V' = V \setminus \{b, c, d\}$ is a trap for P_1 : player P_0 can keep the game within V'. In V', P_0 can avoid priority 3, and $\operatorname{Attr}_0(g)|_{V'} = \{g, f\} \subseteq W_0$
- $V'' = V' \setminus \{f, g\}$ is a trap for P_0 : P_1 can keep the game within V''. $W_1 \mid_{V''} = \emptyset, W_0 \mid_{V''} = \{a, e\}$

Conclusion: $W_0 = \{a, e, f, g\}, W_1 = \{b, c, d\}$. Both players have memoryless strategies.

Polyomial-time solution for weak parity games: decompose the game arena into attractors.