Games and controller synthesis - Reachability games

As a general rule, all game arenas in our exercises are finite.

Exercise 1

We reconsider the winning condition $\operatorname{Reach}\left(F_{1}\right) \wedge \operatorname{Reach}\left(F_{2}\right)$ for P_{0}, where $F_{1} \cap F_{2}=\emptyset$. So P_{0} wins a play if and only if the play visits both F_{1} and F_{2}.

Describe the winning strategies of both players and show that both need memory in order to win.

Hint : show that $X=\operatorname{Attr}_{0}\left(\left(F_{1} \cap \operatorname{Attr}_{0}\left(F_{2}\right)\right) \cup\left(F_{2} \cap \operatorname{Attr}_{0}\left(F_{1}\right)\right)\right.$ is the winning region W_{0} of P_{0}.

Exercise 2

We consider the following winning condition Win for P_{0}, given two disjoint sets $F, B \subseteq V$.

A play π is won by P_{0} if it reaches F without visiting B before. So $\mathrm{Win}=(V \backslash B)^{*} F V^{\omega}$.

1. Adapt the attractor construction to this winning condition. What guarantees P_{1} 's winning strategy on the complement of the attractor?
2. Compute the winning regions on the following example, with $F=\{1,2\}$ and $B=\{5,6\}$:

Exercise 3

We consider the winning condition Win $=\operatorname{Reach}(F) \vee \operatorname{Avoid}(B)$ for P_{0}, where $F \cap B=\emptyset$. A maximal play π is won by P_{0} if and only if π visits F or avoids B. In other words, Win $=V^{*} F V^{\omega} \cup(V \backslash B)^{\omega}$.

We want to compute the winning regions W_{0}, W_{1}, and winning strategies σ_{0}, σ_{1}.

1. What is the winning condition for P_{1} ?
2. Compute the winning regions for this game on the example in Exercise 2 with $F=\{4\}$ and $B=\{5\}$.
3. Give an example of a game with condition $\mathrm{Win}^{\prime}=\operatorname{Reach}(F) \wedge \operatorname{Avoid}(B)$ and a vertex v that is winning for P_{0} for condition Reach (F), and for condition $\operatorname{Avoid}(B)$, but not for Win.
4. Reduce the game with condition Win to a game on a larger arena, where the players remember which sets were visited. What is the winning condition of P_{0} for the larger game?
5. Solve the game with condition Win as a weak parity game.

Exercise 4

We consider the winning condition Win $=\left(\operatorname{Reach}\left(F_{1}\right) \wedge \operatorname{Avoid}\left(B_{1}\right)\right) \vee$ $\left(\operatorname{Reach}\left(F_{2}\right) \wedge \operatorname{Avoid}\left(B_{2}\right)\right)$ for P_{0}, where the sets $F_{1}, F_{2}, B_{1}, B_{2}$ are pairwise disjoint. So a maximal play π is won by P_{0} if and only if π visits F_{1} and avoids B_{1}, or it visits F_{2} and avoids B_{2}.

Compute the winning regions W_{0}, W_{1}, and winning strategies σ_{0}, σ_{1}.

Obligation games. Win is a boolean combination of reachability conditions. Example: visit either p and q and not r, or q and r and not p. Equivalent formulation:

- Win $=\mathcal{F}$, where $\mathcal{F}=\left\{F_{1}, \ldots, F_{k}\right\}, F_{i} \subseteq V$.
- A maximal play $\pi=v_{0}, v_{1}, \ldots$ is winning (for P_{0}) if $\operatorname{Occ}(\pi) \in \mathcal{F}$.

Notation: $\operatorname{Occ}(\pi)=\left\{v \mid \exists i\right.$ s.t. $\left.v=v_{i}\right\}$ is the set of states visited by π.

Win: $\pi \in$ Win if and only if $\{2,7\} \subseteq \operatorname{Occ}(\pi)$. In order to win, P_{0} needs memory in state 1: she has to visit both 2 and 5 .

Solution for obligation games: reduction to weak parity games.

Weak parity games.

- The game arena \mathcal{A} is equipped with a priority function $p: V \rightarrow$ $\{0, \ldots, d\}: p(v)$ is the priority (color) of v.
- Win is the set of maximal plays such that the biggest priority is even. Formally:

$$
\pi \in \text { Win } \quad \text { iff } \quad \max \{p(v) \mid v \in \operatorname{Occ}(\pi)\} \text { is even }
$$

Example.

$p(a)=p(e)=0, p(b)=p(f)=1, p(c)=p(g)=2, p(d)=3$.

- $d \in W_{1}$ and $\operatorname{Attr}_{1}(d)=\{d, c, b\} \subseteq W_{1}$
- $V^{\prime}=V \backslash\{b, c, d\}$ is a trap for P_{1} : player P_{0} can keep the game within V^{\prime}. In V^{\prime}, P_{0} can avoid priority 3, and $\left.\operatorname{Attr}_{0}(g)\right|_{V^{\prime}}=\{g, f\} \subseteq W_{0}$
- $V^{\prime \prime}=V^{\prime} \backslash\{f, g\}$ is a trap for $P_{0}: P_{1}$ can keep the game within $V^{\prime \prime}$. $\left.W_{1}\right|_{V^{\prime \prime}}=\emptyset,\left.W_{0}\right|_{V^{\prime \prime}}=\{a, e\}$

Conclusion: $W_{0}=\{a, e, f, g\}, W_{1}=\{b, c, d\}$. Both players have memoryless strategies.

[^0]
[^0]: Polyomial-time solution for weak parity games: decompose the game arena into attractors.

