
Games and synthesis
Regular games

1 Regular games

Game arenas.
A = (V0, V1, E)

• 2 players: P0 et P1. The set of vertices is partitioned as V = V0 ∪ V1,
with V0 belonging to P0 and V1 to P1.

• Edges E ⊆ V × V .

Plays. A play π is a maximal path in the graph (V,E). We usually assume
that the graph has no dead-ends.

Strategies.

• A strategy of P0 is a mapping σ0 : V ∗V0 → V s.t. σ0(πv) ∈ post(v).

Here: π v path in (V,E), π ∈ V ∗, v ∈ V , and post(v) = {w | (v, w) ∈
E}. A strategy σ1 of P1 is defined similarly.

• A play π = v0, v1, . . . is consistent with a strategy σ if vi+1 = σ(v0 · · · vi)
for all i s.t. vi ∈ V0.

Game. A game G consists of an arena A and a winning condition Win ⊆
V ω (winning usually for P0).

Winner.

• A play π is won by P0 if π ∈Win.

• σ0 : V ∗V0 → V is a winning strategy for P0 from a vertex v ∈ V if
every play consistent with σ0 from v is won by P0.

• Winning region W0 of P0: set of vertices from which P0 has a winning
strategy.

A game is called regular if Win is a (ω-) regular language.
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2 Reachability games

Fix F ⊆ V . A play is won by P0 if it reaches F .

Attractors.

Attr
(0)
0 (F ) = F

Attr
(n+1)
0 (F ) = Attr

(n)
0 (F ) ∪

{v ∈ V0 | post(v) ∩ Attr
(n)
0 (F ) 6= ∅}

{v ∈ V1 | post(v) ⊆ Attr
(n)
0 (F )}

Attr
(0)
0 (F ) ⊆ Attr

(1)
0 (F ) ⊆ · · · ⊆ Attr

(|V |)
0 (F ) =: Attr 0(F )

• Attr
(i)
0 (F ) is the set of vertices from which P0 can reach F in at most

i steps.

• The set Attr 0(F ) is the winning region of P0 and its complement V \
Attr 0(F ) is the winning region of P1 for the dual condition (avoid F ).

• The dual of a reachability game is called safety game.

• Reachability and safety games are determined.

The attractor Attr 1(G) of P1 is defined symmetrically, exchanging P0 and
P1.

The complement of an attractor of P0, so a set of the form U = V \
Attr 0(F ), is a trap for P0 or (0-trap): P0 cannot leave U , and P1 has always
a move to stay in U .

1. Compute the winning regions and strategies of P0 and P1 for the reach-
ability game below: F = {3}.
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2. Show that on a finite arena, any attractor can be computed in linear
time.

3. True or false?

• Attr 0(F1 ∩ F2) = Attr 0(F1) ∩ Attr 0(F2)

• Attr 0(F1 ∪ F2) = Attr 0(F1) ∪ Attr 0(F2)

4. Assume that we have a game described by a finite game arena A and a
regular, prefix-closed language L ⊆ V ∗. The winning condition Win is
the set of all infinite words w ∈ V ω such that all prefixes of w belong
to L.

Give an algorithm to compute the winning regions and strategies of the
two players.

3 ω-automata

An ω-automaton is a tuple A = (S,Σ, δ, s0,Acc) with finite set of states S,
and transition relation δ ⊆ S×Σ×S. It accepts words from Σω with various
acceptance conditions Acc:

• Büchi: Acc = F , and F should be visited infinitely often

• Parity: states have priorities (colors) p : V → {0, . . . , k}. The highest
color visited infinitely often should be even.
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• Rabin/Streett, Muller.

• The automaton A below accepts with the parity condition (maximal
color visited infinitely often is even), with the color of a state being
equal to the state number.
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1. Which language is accepted by A ?

2. Give an equivalent Büchi automaton.

3. Can you give an equivalent deterministic Büchi automaton? Jus-
tify.

• Show how to transform a Büchi automaton into an equivalent parity
automaton with the same number of states.

• Show how to transform a parity automaton into an equivalent Büchi
automaton of size polynomial in the size of the original automaton.
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